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Lyapunov’s Theorem for Measures on D-posets1

Giuseppina Barbieri

We generalize Lyapunov’s convexity theorem for measures on effect algebras.

KEY WORDS: Lyapunov theorem; effect algebra; measure.

1. INTRODUCTION

One of the most loved and celebrated theorems of measure theory is
“Lyapunov’s theorem” which states that the range of a nonatomic σ -additive mea-
sure on a σ -algebra with values in a finite dimensional vector space is convex.
In this paper I extend Lyapunov’s theorem to measures defined on D-posets. My
proof follows Halmos’ idea and reduces the proof to the semi-convex case. Indeed,
I extend Lyapunov’s theorem to measures defined on a weaker algebraic structure
which is endowed with an ordering and a partial operation compatible with order
as explained in Section 4. Every D-poset satisfies these axioms and so does every
complemented modular lattice. So Theorem 4.10 generalizes Avallone’s version,
(Avallone, 1995) Theorem 2.3, of Lyapunov’s theorem valid for modular function
on complemented lattices.

In (Avallone and Basile, 2003), Avallone and Basile have applied the ver-
sion of Lyapunov’s theorem valid for D-posets, Theorem 3.6 in an economic
context.

D-posets have been introduced in Chovanec and Kopka (1994) as a generaliza-
tion of many structures, as orthomodular posets, orthoalgebras and MV-algebras.
Therefore the study of measures on D-posets allows us to unify the study of mea-
sures on orthomodular posets in noncommutative measure theory and measures
on MV-algebras in fuzzy measure theory.

I wish to express my gratitude to Professor Hans Weber for his helpful
suggestions.

1 The main result of this paper was presented at IQSA held in Cesena (Italy) March 31–April 5,
2001.

2 University of Udine, Italy; e-mail: barbieri@dimi.uniud.it.
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2. PRELIMINARIES

We will fix some notations. First of all, we will give the definition of a D-poset.
Examples of D-posets can be found in Chovanec and Kopka (1994).

Definition 2.1. Let (P, ≤) be a partial ordered set (for short poset). A partial
binary operation � on P such that b � a is defined if and only if a ≤ b is called a
difference on (P, ≤) if the following conditions are satisfied for all a, b, c ∈ P:

(1) If a ≤ b then b � a ≤ b and b � (b � a) = a
(2) If a ≤ b ≤ c then c � b ≤ c � a and (c � a) � (c � b) = b � a.

Definition 2.2. Let (P, ≤, �) be a poset with difference and let 0 and 1 be the
smallest and greatest elements in P , respectively. The structure (P, ≤, �) is called
a difference poset (D-poset for short), or a difference lattice (D-lattice for short) if
P is a lattice.

An alternative structure to a D-poset is that of an effect algebra introduced by
Foulis and Bennett in (Foulis and Bennett, 1994). These two structures, D-posets
and effect algebras, are equivalent as shown in (Dvurečenskij and Pulmannová,
2000), Theorem 1.3.4.

From now on, P denotes a D-poset.
If a ∈ P , we set a⊥ = 1 � a.
We say that a and b are orthogonal if a ≤ b⊥ and we write a ⊥ b. If a ⊥ b, we

set a ⊕ b = (a⊥ � b)⊥. If a1, . . . , an ∈ P we inductively define a1 ⊕ . . . ⊕ an =
(a1 ⊕ . . . ⊕ an−1) ⊕ an if the right side exists. The sum is independent on any
permutation of the elements. We say that {a1, . . . , an} is orthogonal if a1 ⊕ . . . ⊕
an exists. If a ∈ P , a partition of a is an orthogonal family {a1, . . . , an} with
⊕i≤nai = a.

Proposition 2.1.

(1) If a ⊥ b, then a ≤ a ⊕ b and (a ⊕ b) � a = b.
(2) If a ≤ b ≤ c, then b � a ≤ c � a
(3) If a ≤ b, then b = a ⊕ (b � a).

In the following, we use a property weaker than Dedekind σ -completeness:
P has the interpolation property if, for all sequences xn , yn in P with xn ≤

xn+1 ≤ yn+1 ≤ yn , (n ∈ N) there exists x ∈ P such that xn ≤ x ≤ yn for every
n ∈ N.

A function µ on P with values in a linear space E is called measure if a ⊥ b
implies µ(a ⊕ b) = µ(a) + µ(b). It is easy to see that µ is a measure iff a ≤ b
implies µ(b � a) = µ(b) − µ(a). We say that µ is semi-convex if, for every a ∈ P ,
there exists b ≤ a such that µ(b) = 1

2µ(a).
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A functionν on a lattice is called modular ifν(x∨y) + ν(x∧y)=ν(x) + ν(y).
We now give two properties for measures on D-posets.
According to Weber’s terminology (Weber, 1996) we extend the definition of

µ-chained.

Definition 2.3. Let µ be a function on a poset L with values in a linear normed
space. We say that L is µ-chained if for every ε > 0 and for every a, b ∈ L with
a ≤ b there exist x0, x1, . . . , xn ∈ L such that a = x0 ≤ x1 ≤ . . . ≤ xn = b and
|µ(c) − µ(d)| < ε whenever c, d ∈ [xi , xi+1] for i = 0, . . . , n − 1.

According to Bhaskara Rao and Bhaskara Rao’s terminology (Bhaskara Rao
and Bhaskara Rao, 1983) we extend the definition of µ strongly continuous.

Definition 2.4. Let µ be a function on P with values in a linear normed space.
We say that µ is strongly continuous if for every ε > 0 and a ∈ L , there exists a
partition {a1, . . . , am} of a in L such that |µ(b)| < ε whenever b ≤ a j , j ≤ m.

We compare these two properties.

Proposition 2.2. Let µ : P → E be a measure on P with values in a linear
normed space. Then µ is strongly continuous iff P is µ-chained.

Proof: ⇒ Let ε > 0 and a, b ∈ P with a ≤ b.
By hypothesis there exist a1, . . . , am ∈ P such that a1 ⊕ . . . ⊕ am = b � a

and |µ(e)| < ε
2 whenever e ≤ a j , j ≤ m. Put xi := a ⊕ a1 ⊕ . . . ⊕ ai for i =

1, . . . , m and x0 := a. Then a = x0 ≤ x1 ≤ . . . ≤ xm = b. Let c, d ∈ [xi , xi+1].
Then c � xi ≤ xi+1 � xi = ai+1 and d � xi ≤ xi+1 � xi = ai+1. So |µ(d � xi )|
< ε

2 and |µ(c � xi )| < ε
2 . Thus |µ(c) − µ(d)| = |µ(c � xi ) − µ(d � xi )| < ε.

⇐ Let ε > 0 and a ∈ P . By hypothesis there exist x0, x1, . . . , xn ∈ P such
that 0 = x0 ≤ x1 ≤ . . . ≤ xn = a and |µ(c) − µ(d)| < ε whenever c, d
∈ [xi , xi+1]. Put ai := xi � xi−1 for i = 1, . . . , n. Then {a1, . . . , an} is an
orthogonal family and a1 ⊕ . . . ⊕ an = a. Moreover, if b ≤ ai , then xi−1 ≤ b ⊕
xi−1 ≤ xi . Hence |µ(b)| = |µ(b ⊕ xi−1) − µ(xi−1)| < ε. �

3. THE MAIN RESULT

The proof of Lyapunov’s theorem 3.8, the main result of this paper, is based
on a series of lemmata. Now we study conditions which ensures convexity of the
range.

Lemma 3.1. Let L be a poset with 0 which satisfies the interpolation property
and ν : L → R be a monotone function. Suppose that L is ν-chained, then ν(L)
is an interval.
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Proof: Let a ∈ L , pick an increasing sequence (Cn)n∈N of finite chains from 0
to a with the following property:

|ν(x) − ν(y)| < 1
n whenever x and y are two consecutive elements of Cn .

Put C a maximal chain with ∪n∈NCn ⊂ C ⊂ [0, a]. Since ν(∪n∈NCn) is dense
in [ν(0), ν(a)], so is ν(C). We will prove ν(C) = [ν(0), ν(a)]. Let r ∈ [ν(0), ν(a)],
D1 := {x ∈ C : ν(x) ≤ r} and D2 := {x ∈ C : ν(x) ≥ r}. Since ν(C) is dense
in [ν(0), ν(a)], r = supx∈D1

ν(x) = infx∈D2 ν(x). Choose an increasing sequence
(xn)n∈N in D1 such that ν(xn) → r and a decreasing sequence (yn)n∈N in D2 such
that ν(yn) → r . By the maximality of C , also C has the interpolation property.
Hence there exists x ∈ C such that xn ≤ x ≤ yn . Therefore we get ν(x) = r . �

Lemma 3.2. Let L be a poset with the interpolation property, E be a Archimedean
Riesz space, ν : L → E be a monotone function such that for all a, b ∈ L, a ≤ b,
there exists c ∈ [a, b] with ν(c) = ν(a)+ν(b)

2 . Then for all a, b ∈ L, a ≤ b, there
exists a monotone function defined on the real unit interval γ : [0, 1] → [a, b]
such that γ (0) = a, γ (1) = b and

ν(γ (t)) = tν(b) + (1 − t)ν(a). (∗)

Proof: We inductively define γ for every rational dyadic number r ∈ [0, 1].
For n ∈ N ∪ {0} put Tn := { i

2n | i = 0, . . . , 2n}.
On T0 = {0, 1} we define γ by γ (0) := a and γ (1) := b.
Suppose that we have defined γ on Tn as required. Let r ∈ Tn+1 \ Tn , then r =

2k+1
2n+1 for k = 0, . . . , 2n − 1. We observe that 2k+1

2n+1 = k
2n + 1

2n+1 . By hypothesis there

exists c ∈ [γ ( k
2n ), γ ( k+1

2n )] with ν(c) = ν(γ ( k
2n ))+ν(γ ( k+1

2n ))
2 . Then we choose γ (r ) = c.

Now we have to define γ (t) for t ∈ [0, 1].
Put rn := min{r ∈ Tn : r ≥ t} and sn := max{r ∈ Tn : r ≤ t}. Then (rn)n∈N

is a decreasing sequence of rational dyadic number with infimum t and (sn)n∈N is an
increasing sequence of rational dyadic number with supremum t . Since L has the
interpolation property, there exists z ∈ L with γ (rn) ≤ z ≤ γ (sn) and we choose
γ (t) := z. Now we check that z is as required. By monotonicity we have rnν(b) +
(1 − rn)ν(a) = ν(γ (rn)) ≤ ν(γ (t)) ≤ ν(γ (sn)) = snν(b) + (1 − sn)ν(a). Passing
to the order limit for n which tends to infinity and observing that E is Archimedean
we have formula (*). �

Lemma 3.3. Let P be a D-poset with the interpolation property, E be an
Archimedean Riesz space and µ a positive measure on P with values in E. If
µ is semi-convex, then for all a, b ∈ P with a ≤ b there exists a monotone map
defined on the real unit interval γ : [0, 1] → [a, b] such that γ (0) = a, γ (1) = b
and µ(γ (t)) = (1 − t)µ(a) + tµ(b) for every t ∈ [0, 1].

Proof: First observe that µ is monotone.
We will prove that the assumptions of Lemma 3.2 are fulfilled.
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Let a, b ∈ P , with a ≤ b, consider c such that a ⊕ c = b and choose c′ ≤
c such that µ(c′) = 1

2µ(c). Then for d = a ⊕ c′, we have µ(d) = µ(a ⊕ c′) =
µ(a) + 1

2µ(b) − 1
2µ(a) = 1

2 (µ(a) + µ(b)). Now the proof follows from
Lemma 3.2. �

Lemma 3.4. Let E be a linear space andµ : P → E a measure. Let a1, a2 be two
orthogonal elements of P. Let γi : [0, 1] → [0, ai ] be functions with
γi (t) = tµ(ai ) for t ∈ [0, 1], i = 1, 2. Then γ (t) = γ1(1 − t) ⊕ γ2(t) is well-
defined and µ(γ (t)) = tµ(a2) + (1 − t)µ(a1).

The following fundamental trick, also used in Armstrong and Prikry (1981),
Candeloro and Sacchetti (1979), Volkmer and Weber (1983), comes from Halmos.

Lemma 3.5. Let P be a D-poset with the interpolation property, E be an
Archimedean Riesz space and µ a positive measure on P with values in E. Let
ν : P → [0, +∞) be a measure such that ν(tn) → 0 whenever µ(tn) is order con-
vergent to 0. If µ is semi-convex, then (µ, ν) is semi-convex.

Proof: Let a ∈ P and µ′ := (µ, ν). Since µ is semi-convex there exists a1 ≤ a
such that µ(a1) = 1

2µ(a). Let a2 such that a1 ⊕ a2 = a. By Lemma 3.3 there
exists a monotone function γ1 : [0, 1] → P such that γ1(0) = 0, γ1(1) = a1 and
µ(γ1(t)) = tµ(a1).

We prove that ν ◦ γ1 is continuous:
Let (tn)n∈N be a sequence in [0,1] converging to t . Suppose first that tn ≤ t

for every n ∈ N. Since γ1(tn) ≤ γ1(t), then there are cn ∈ P such that γ1(tn) ⊕
cn = γ1(t). Since µ(cn) = µ(γ1(t)) − µ(γ1(tn)) = (t − tn)µ(a1) → 0, we obtain
ν(γ1(t)) − ν(γ1(tn)) = ν(cn) → 0. Analogously, one treats the case tn ≥ t for n ∈ N.

Again by Lemma 3.3 there exists a monotone function γ2 : [0, 1] → P such
that γ2(0) = 0, γ2(1) = a2 and µ(γ2(t)) = tµ(a2). As we have seen before ν ◦ γ2 is
continuous. Choose γ as in Lemma 3.4. Then ν ◦ γ (t) = ν ◦ γ1(1 − t) + ν ◦ γ2(t)
is continuous.

Since ν is additive on orthogonal elements, ν(a1) ≤ 1
2ν(a) ≤ ν(a2) or ν(a2)

≤ 1
2ν(a) ≤ ν(a1). By the continuity of ν ◦ γ there exists t0 ∈ [0, 1] such that

ν(γ (t0)) = 1
2ν(a).

Since µ(a1) = µ(a2) = 1
2µ(a), we have µ(γ (t)) = (1 − t)µ(a1) + tµ(a2)

= 1
2µ(a).

Put d := γ (t0), then we have d ≤ a and µ′(d) = 1
2µ′(a). �

The following theorem has been used by Avallone and Basile in (Avallone
and Basile, in press).
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Theorem 3.6. Let P be a D-poset with the interpolation property, µ : P → R
l

a positive strongly continuous measure. Then for all a, b ∈ P with a ⊥ b and for
all a, b ∈ P with a ≤ b the segment µ(a), µ(b) is contained in the range of µ; in
particular the range of µ is a star-shaped domain with respect to 0.

Proof: First, we will show that µ is semi-convex by induction on l.
For l = 1 the proof follows by Lemma 3.1 and Proposition 2.2. Assume that l ≥ 2
and the theorem is true for R

l−1-valued measures.
Put µ′ := (µ1 + µl , µ2, . . . , µl−1). By assumptions µ′ is semi-convex. Since
µ′(xn) → 0 implies µl(xn) → 0, we have by Lemma 3.5 that (µ′, µl) is semi-
convex. Put ν := (µ′, µl). Let T : (z1, . . . , zl) ∈ R

l �→ (z1 − zl , z2, . . . , zl) ∈ R
l .

Then T is a linear map and T ◦ ν = µ. It follows that µ is semi-convex.
Now the rest of the proof comes from Lemma 3.3 and 3.4. �

Not all strongly continuous measures on orthomodular lattices have convex
range:

Example 3.5. Let L be an orthomodular lattice, L = B1 ∪ B2, where
B1 ∩ B2 = {0, 1} and Bi are two complete blocks on which are defined atom-
less positive σ -additive measures µi with values in R

2 and µ1(1) = µ2(1). Let
µ : L → R

2 be the measure defined by µ|Bi := µi . Then the range of µ is the
union of two convex sets, so it is in general not convex:

For instance, take atomless positive real-valued measures λi on Bi with
λi (1) = 2 and vectors ei , fi ∈ R

2 with e1 + e2 = f1 + f2. Moreover, let ai ∈
Bi with λi (ai ) = 1 and a⊥

i be the complement of ai in Bi . Define µi : Bi →
R

2 by µi (x) = λi (x ∧ ai )ei + λi (x ∧ a⊥
i ) fi . Then µ(L) is the union of the par-

allelograms µ1(B1) and µ2(B2) generated by e1, f1 and e2, f2, respectively.
Hence µ(L) is not convex, e.g. if e1 = (0, 1), f1 = (2, 1), e2 = (1, 0), f2 =
(1, 2).

But modularity forces convexity! We need some preparatory stuff.

Lemma 3.7. Let L be a lattice, E a linear space and µ : L → E a modular
function. Suppose that for all a, b ∈ L with a ≤ b there exists γ : [0, 1] → [a, b]
such that γ (0) = a, γ (1) = b and µ(γ (t)) = tµ(b) + (1 − t)µ(a). Then for all
a, b ∈ L there exists γ : [0, 1] → [a ∧ b, a ∨ b] such that γ (0) = a, γ (1) = b
and µ(γ (t)) = (1 − t)µ(a) + tµ(b).

Proof: Let γ1 : [0, 1] → [a ∧ b, a] such that γ1(0) = a ∧ b, γ1(1) = a and
µ(γ1(t)) = (1 − t)µ(a ∧ b) + tµ(a). Let γ2 : [0, 1] → [a ∧ b, b] such that γ2(0)
= a ∧ b, γ2(1) = b and µ(γ2(t)) = (1 − t)µ(a ∧ b) + tµ(b).
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Put γ (t) := γ1(1 − t) ∨ γ2(t) ∈ [a ∧ b, a ∨ b]. Then γ (0) = γ1(1) ∨ γ2(0) = a ∨
(a ∧ b) = a, γ (1) = γ1(0) ∨ γ2(1) = b and moreover by modularity µ(γ (t)) =
µ(γ1(1 − t)) + µ(γ2(t)) − µ(γ1(1 − t) ∧ γ2(t)). We observe γ1(1 − t)
∈ [a ∧ b, a] and γ2(t) ∈ [a ∧ b, b], so γ1(1 − t) ∧ γ2(t) = a ∧ b. Therefore
µ(γ (t)) = tµ(a∧b) + (1 − t)µ(a) + (1 − t)µ(a∧b) + tµ(b) − µ(a∧b) = (1 − t)
µ(a) + tµ(b). �

Definition 3.6. Let µ : P → R be a modular function. The total variation |µ| :
P → [0, +∞] of µ is defined by |µ|(a) := sup{∑n

i=1 |µ(xi ) − µ(xi−1)| : n ∈
N, 0 = x0 ≤ x1 ≤ . . . ≤ xn = a}

We want to stress that without modularity, the total variation of a measure
fails to be additive.

Example 3.7. Let L be an orthomodular lattice , B1 = {0, a, b, 1} and B2

= {0, c, d, 1} two blocks such that L = B1 ∪ B2 and B1 ∩ B2 = {0, 1}. Let µ :
L → R be a measure with µ(a) = 3, µ(b) = −1, µ(c) = µ(d) = 1. Then |µ|(c ∨
d) = |µ|(1) = 4, but |µ|(c) + |µ|(d) = 2.

Proposition 3.3. Let P be a D-lattice and µ : P → R be a measure which is
modular.

(a) |µ| is modular.
(b) Then |µ|(a ⊕ b) = |µ|(a) + |µ|(b) whenever a, b are orthogonal elements

of P.
(c) |µ|(a) = sup{∑n

i=1 |µ(ai )| : n ∈ N, ⊕n
i=1ai = a} for every a ∈ P.

(d) If µ is strongly continuous, then |µ| is a strongly continuous bounded
positive measure.

Proof:

(a) is contained in (Weber, 1999).
(b) Let c = a ⊕ b. Then by 1.3.10(a) of (Weber, 1999) we have |µ|(c) =

|µ|(a) + d|µ|(a, c), where d|µ|(a, c) := sup{∑n
i=1 |µ(xi ) − µ(xi−1)| : n ∈

N, a = x0 ≤ x1 ≤ . . . ≤ xn = c}. We now verify that d|µ|(a, c) = |µ|(b).
Let a = x0 ≤ . . . ≤ xn = c. Define yi := xi � a. Then 0 = y0 ≤ . . . ≤
yn = c � a = b and

∑n
i=1 |µ(xi ) − µ(xi−1)| = ∑n

i=1 |µ(yi ) − µ(yi−1)| ≤
|µ|(b). Hence d|µ|(a, c) ≤ |µ|(b).

Vice versa, let 0 = y0 ≤ . . . ≤ yn = b. Define xi := a ⊕ yi . Then a =
x0 ≤ . . . ≤ xn = a ⊕ b = c and

∑n
i=1 |µ(yi ) − µ(yi−1)| = ∑n

i=1 |µ(xi ) −
µ(xi−1)| ≤ d|µ|(a, c). Hence d|µ|(a, c) ≥ |µ|(b).

(c) Let µ∗(a) := sup{∑n
i=1 |µ(ai )| : n ∈ N, ⊕n

i=1ai = a}. We will prove
|µ|(a) ≤ µ∗(a) for every a ∈ P .
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Let 0 = x0 ≤ x1 ≤ . . . ≤ xn = a. Then there exists di ∈ P (i = 1, . . .

, n) such that xi = xi−1 ⊕ di . Then d1 ⊕ . . . ⊕ dn = a and
∑n

i=1 |µ(xi ) −
µ(xi−1)| = ∑n

i=1 |µ(di )| ≤ µ∗(a).
We will prove the reverse inequality.
Let ⊕n

i=1ai = a. Put x0 := 0 and xi = ⊕i
j=1a j . Then we have 0 =

x0 ≤ x1 ≤ . . . xn = a and
∑n

i=1 |µ(ai )| = ∑n
i=1 |µ(xi ) − µ(xi−1)|

≤ |µ|(a). Therefore µ∗(a) ≤ |µ|(a).
(d) It follows from the inequality ‖µ‖ ≤ |µ| ≤ 2‖µ‖ where ‖µ‖(a)

= sup{|µ(x)| : P � x ≤ a}. The former inequality is obvious. We will
prove the latter one using (c).

Let ai ∈ P such that ⊕n
i=1ai = a. We get

∑n
i=1 |µ(ai )| = ∑n

i=1 µ(ai ) ∨ 0 +∑n
i=1(−µ(ai ) ∨ 0) = ∑

i∈I µ(ai ) − ∑
i∈J µ(ai ) = µ(⊕i∈I ai ) − µ(⊕i∈J ai ) for

some I , J subset of {1, 2, . . . , n}. Observe that ⊕i∈I ai and ⊕i∈J ai are well-
defined elements of P . Moreover, we have ⊕i∈I ai ≤ a and ⊕i∈J ai ≤ a. Then
|µ|(a) ≤ 2‖µ‖(a). �

Theorem 3.8. Let P be a D-lattice with the interpolation property, µ : P → R
l

a strongly continuous measure which is modular. Then µ(P) is convex.

Proof: Let µ = (µ1, . . . , µl). We can write µi = |µi | − (|µi | − µi ) where |µi |
denotes the total variation of µi . Write µ∗∗

i := |µi | and µ∗
i := |µi | − µi . Then

µ∗∗
i , µ∗

i are positive measures and by Proposition 3.3 both µ∗
i and µ∗∗

i are strongly
continuous. Put µ := (µ∗∗

1 , . . . , µ∗∗
n , µ∗

1, . . . , µ∗
n). Then µ is strongly continuous,

thus from Theorem 3.6 and Lemma 3.7 µ(P) is convex. Let T : (z1, z2) ∈ R
2l �→

z1 − z2 ∈ R
l . Then T is a linear map and T (µ(P)) = µ(P). It follows that µ(P)

is convex, as a linear image of a convex set. �

We now want to derive from Theorem 3.8 the classical version of Lyapunov
theorem where non-atomicity is involved. We start with a definition.

Definition 3.8. Let µ be a function on P . We say that f ∈ P is a µ-atom if
µ( f ) �= 0 and for every g ∈ P , g ≤ f , either µ(g) = µ( f ), or µ(g) = 0. We say
that µ is atomless if P does not contain any µ-atoms.

We need the following result.

Proposition 3.4. (Weber, 1996, 2.5) Let µ be a modular function on a lattice
L. Then N (µ) := {(x , y) ∈ L2 : µ is constant on [x ∧ y, x ∨ y]} is a congruence
relation and the quotient L̂ := L/N (µ) is a modular lattice.

Proposition 3.5. Let P a σ -complete D-lattice and µ : P → R
l be a σ -order con-

tinuous measure which is modular. Then µ is atomless iff µ is strongly continuous.
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Proof: First, we observe that , by Proposition 2.2, µ is strongly continuous iff
P is µ-chained. From 5.8 of (Weber, 1996) P is µ-chained iff P̂ := P/N (µ) is
dense-in-itself (i.e. for any â, b̂ ∈ P̂ with â < b̂ there is an element x̂ ∈ P̂ such
that â < x̂ < b̂).

We will prove that this latter condition is equivalent to µ atomless. Obviously
it is stronger than µ atomless.

Now we prove µ atomless implies P̂ dense-in-itself. Let â < b̂. Replacing a
by a ∧ b, we may assume a ≤ b. Let c be such that b = a ⊕ c. As â �= b̂, ĉ �= 0̂.
Since µ is atomless there exists x ∈ P such that 0 < x < c, µ(x) �= 0 and µ(x) �=
µ(c). Put e = x ⊕ a, we get a < a ⊕ x < a ⊕ c = b and µ(a) �= µ(e) �= µ(b).
Then â < ê < b̂, as claimed. �

From 3.12 and 3.15 it follows

Corollary 3.1. If P is σ -complete and µ : P → R
l is an atomless σ -order con-

tinuous measure which is modular, then its range is convex.

4. GENERALIZATIONS

In Section 3 we have not used all axioms of a D-poset. It turns out that in
3.3–3.6 we can replace a D-poset with a weaker structure (L , ≤, ⊥, ⊕) where
(L , ≤) is a poset with 0 and 1, the smallest and the greatest element of L , ⊥ is a
binary relation on L and ⊕ is a partially defined binary operation satisfying:

(1) a ⊕ b is defined if and only if a ⊥ b;
(2) a ⊕ 0 = 0 ⊕ a = a for every a ∈ L;
(3) if a ≤ b there exists c ∈ L with c ⊥ a and a ⊕ c = b;
(4) if c′ ≤ c, a′ ≤ a and c ⊥ a, then c′ ⊥ a′ and c′ ⊕ a′ ≤ c ⊕ a.

Definition 4.9. We say that µ defined on (L , ≤, ⊥, ⊕) is a measure if
µ(a ⊕ b) = µ(a) + µ(b) whenever a, b ∈ L and a ⊥ b.

Theorem 4.9. Let (L , ≤) be a poset with the interpolation property, ⊥ be
a binary relation on L and ⊕ a partially defined operation on L satisfying
the axioms (1)–(4) as above. Let µ : L → R

l be a positive measure such
that L is µ-chained.

(a) Then for all a, b ∈ L with a ⊥ b and for all a, b ∈ L with a ≤ b the
segment µ(a), µ(b) is contained in the range of µ; in particular the
range of µ is a star-shaped domain with respect to 0.

(b) If L is a lattice and µ is modular, then µ(L) is convex.

In the proof of Proposition 2.2, Proposition 3.3(b) and therefore in
Theorem 3.8, L need satisfy another property, namely
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(5) If a ≤ x ≤ a ⊕ b, then there exists c ≤ b with a ⊕ c = x .

We will prove the generalization of Proposition 3.3(b).

Proposition 4.6. Let (L , ≤, ⊥, ⊕) be a lattice as in Theorem 4.9 satisfying the ad-
ditional axiom (5). Let µ : L → R be a measure which is modular. Then |µ|(a ⊕ b)
= |µ|(a) + |µ|(b) whenever a, b are orthogonal elements of L.

Proof: Let c = a ⊕ b. As in Proposition 3.3(b) we have to verify d|µ|(a, c) =
|µ|(b).

Let x0 := a ≤ x1 ≤ . . . ≤ xn−1 ≤ xn = a ⊕ b. Then since a ≤ xn−1 ≤ a ⊕
b, by axiom (5), there exist yn−1 ∈ L , yn−1 ≤ b such that xn−1 = a ⊕ yn−1; and
so on for every i = n − 2, . . . , 1 there exist yi ∈ L such that xi = a ⊕ yi and
yi ≤ yi+1. So for y0 := 0 ≤ y1 ≤ y2 ≤ . . . ≤ yn := b, we have

∑n
i=1 |µ(xi ) −

µ(xi−1)| = ∑n
i=1 |µ(yi ) − µ(yi−1)| ≤ |µ|(b). Hence d|µ|(a, c) ≤ |µ|(b).

Vice versa goes similarly as in Proposition 3.3(b). �

Theorem 4.10. Let (L , ≤, ⊥, ⊕) be a lattice as in Theorem 4.9 satisfying the
additional axiom (5). Let µ : L → R

l be a measure which is modular. Suppose
that L is a µ-chained lattice with the interpolation property. Then µ(L) is convex.

Every complemented modular lattice satisfies properties (1)–(5) of (L , ≤,
⊥, ⊕) putting a ⊕ b := a ∨ b whenever a ∧ b = 0.

Therefore, Theorem 4.10 also generalizes Avallone’s version of Lyapunov’s
theorem (Theorem 2.3 of Avallone, 1995 for modular functions on complemented
lattices. Observe that the convexity of the range of a modular function µ on a
complemented lattice L can be reduced to the case that L is modular, passing to
the quotient L/N (µ), (see Proposition 3.4).
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